qmctorch.wavefunction.slater_jastrow module

class qmctorch.wavefunction.slater_jastrow.SlaterJastrow(*args: Any, **kwargs: Any)[source]

Bases: WaveFunction

Slater Jastrow wave function with electron-electron Jastrow factor

\[\Psi(R_{at}, r) = J(r)\sum_n c_n D^\uparrow_n(r^\uparrow)D^\downarrow_n(r^\downarrow)\]

with

\[J(r) = \exp\left( K_{ee}(r) \right)\]

with K, a kernel function depending only on the electron-eletron distances

Parameters:
  • mol (Molecule) – a QMCTorch molecule object

  • jastrow (JastrowKernelBase, optional) – Class that computes the jastrow kernels

  • backflow (BackFlowKernelBase, optional) – kernel function of the backflow transformation

  • configs (str, optional) – defines the CI configurations to be used. Defaults to ‘ground_state’. - ground_state : only the ground state determinant in the wave function - single(n,m) : only single excitation with n electrons and m orbitals - single_double(n,m) : single and double excitation with n electrons and m orbitals - cas(n, m) : all possible configuration using n eletrons and m orbitals

  • kinetic (str, optional) – method to compute the kinetic energy. Defaults to ‘jacobi’. - jacobi : use the Jacobi formula to compute the kinetic energy - auto : use automatic differentiation to compute the kinetic energy

  • cuda (bool, optional) – turns GPU ON/OFF Defaults to False..

  • include_all_mo (bool, optional) – include either all molecular orbitals or only the ones that are popualted in the configs. Defaults to False

Examples::
>>> from qmctorch.scf import Molecule
>>> from qmctorch.wavefunction import SlaterJastrow
>>> mol = Molecule('h2o.xyz', calculator='adf', basis = 'dzp')
>>> wf = SlaterJastrow(mol, configs='cas(2,2)')
init_atomic_orb(backflow)[source]

Initialize the atomic orbital layer.

init_molecular_orb(include_all_mo)[source]

initialize the molecular orbital layers

init_mo_mixer()[source]

Init the mo mixer layer

init_config(configs)[source]

Initialize the electronic configurations desired in the wave function.

init_slater_det_calculator()[source]

Initialize the calculator of the slater dets

init_fc_layer()[source]

Init the fc layer

init_jastrow(jastrow)[source]

Init the jastrow factor calculator

set_combined_jastrow(jastrow)[source]

Initialize the jastrow factor as a sum of jastrows

init_kinetic(kinetic, backflow)[source]

“Init the calculator of the kinetic energies

forward(x, ao=None)[source]

computes the value of the wave function for the sampling points

\[\Psi(R) = J(R) \sum_{n} c_n D^{u}_n(r^u) \times D^{d}_n(r^d)\]
Parameters:
  • x (torch.tensor) – sampling points (Nbatch, 3*Nelec)

  • ao (torch.tensor, optional) – values of the atomic orbitals (Nbatch, Nelec, Nao)

Returns:

values of the wave functions at each sampling point (Nbatch, 1)

Return type:

torch.tensor

Examples::
>>> mol = Molecule('h2.xyz', calculator='adf', basis = 'dzp')
>>> wf = SlaterJastrow(mol, configs='cas(2,2)')
>>> pos = torch.rand(500,6)
>>> vals = wf(pos)
ao2mo(ao)[source]

transforms AO values in to MO values.

pos2mo(x, derivative=0, sum_grad=True)[source]

Compute the MO vals from the pos

Parameters:
  • x ([type]) – [description]

  • derivative (int, optional) – [description]. Defaults to 0.

  • sum_grad (bool, optional) – [description]. Defaults to True.

Returns:

[description]

Return type:

[type]

kinetic_energy_jacobi(x, **kwargs)[source]

Compute the value of the kinetic enery using the Jacobi Formula. C. Filippi, Simple Formalism for Efficient Derivatives .

\[\frac{\Delta \Psi(R)}{\Psi(R)} = \Psi(R)^{-1} \sum_n c_n (\frac{\Delta D_n^u}{D_n^u} + \frac{\Delta D_n^d}{D_n^d}) D_n^u D_n^d\]

We compute the laplacian of the determinants through the Jacobi formula

\[\frac{\Delta \det(A)}{\det(A)} = Tr(A^{-1} \Delta A)\]

Here \(A = J(R) \phi\) and therefore :

\[\Delta A = (\Delta J) D + 2 \nabla J \nabla D + (\Delta D) J\]
Parameters:

x (torch.tensor) – sampling points (Nbatch, 3*Nelec)

Returns:

values of the kinetic energy at each sampling points

Return type:

torch.tensor

gradients_jacobi(x, sum_grad=False, pdf=False)[source]

Compute the gradients of the wave function (or density) using the Jacobi Formula C. Filippi, Simple Formalism for Efficient Derivatives.

\[\frac{K(R)}{\Psi(R)} = Tr(A^{-1} B_{grad})\]

The gradients of the wave function

\[\Psi(R) = J(R) \sum_n c_n D^{u}_n D^{d}_n = J(R) \Sigma\]

are computed following

\[\nabla \Psi(R) = \left( \nabla J(R) \right) \Sigma + J(R) \left(\nabla \Sigma \right)\]

with

\[\nabla \Sigma = \sum_n c_n (\frac{\nabla D^u_n}{D^u_n} + \frac{\nabla D^d_n}{D^d_n}) D^u_n D^d_n\]

that we compute with the Jacobi formula as:

\[\nabla \Sigma = \sum_n c_n (Tr( (D^u_n)^{-1} \nabla D^u_n) + Tr( (D^d_n)^{-1} \nabla D^d_n)) D^u_n D^d_n\]
Parameters:
  • x (torch.tensor) – sampling points (Nbatch, 3*Nelec)

  • pdf (bool, optional) – if true compute the grads of the density

Returns:

values of the gradients wrt the walker pos at each sampling points

Return type:

torch.tensor

get_kinetic_operator(x, ao, dao, d2ao, mo)[source]

Compute the Bkin matrix

Parameters:
  • x (torch.tensor) – sampling points (Nbatch, 3*Nelec)

  • mo (torch.tensor, optional) – precomputed values of the MOs

Returns:

matrix of the kinetic operator

Return type:

torch.tensor

kinetic_energy_jacobi_backflow(x, **kwargs)[source]

Compute the value of the kinetic enery using the Jacobi Formula.

\[\begin{split}\\frac{\Delta (J(R) \Psi(R))}{ J(R) \Psi(R)} = \\frac{\\Delta J(R)}{J(R} + 2 \\frac{\\nabla J(R)}{J(R)} \\frac{\\nabla \\Psi(R)}{\\Psi(R)} + \\frac{\\Delta \\Psi(R)}{\\Psi(R)}\end{split}\]

The lapacian of the determinental part is computed via

\[\begin{split}\\Delta_i \\Psi(R) \\sum_n c_n ( \\frac{\\Delta_i D_n^{u}}{D_n^{u}} + \\frac{\\Delta_i D_n^{d}}{D_n^{d}} + 2 \\frac{\\nabla_i D_n^{u}}{D_n^{u}} \\frac{\\nabla_i D_n^{d}}{D_n^{d}} ) D_n^{u} D_n^{d}\end{split}\]

Since the backflow orbitals are multi-electronic the laplacian of the determinants are obtained

\[\begin{split}\\frac{\\Delta det(A)}{det(A)} = Tr(A^{-1} \\Delta A) + Tr(A^{-1} \\nabla A) Tr(A^{-1} \\nabla A) + Tr( (A^{-1} \\nabla A) (A^{-1} \\nabla A ))\end{split}\]
Parameters:

x (torch.tensor) – sampling points (Nbatch, 3*Nelec)

Returns:

values of the kinetic energy at each sampling points

Return type:

torch.tensor

gradients_jacobi_backflow(x, sum_grad=True, pdf=False)[source]

Computes the gradients of the wf using Jacobi’s Formula

Parameters:

x ([type]) – [description]

log_data()[source]

Print information abut the wave function.

get_mo_coeffs()[source]

Get the molecular orbital coefficients to init the mo layer.

update_mo_coeffs()[source]

Update the Mo coefficient during a GO run.

geometry(pos)[source]

Returns the gemoetry of the system in xyz format

Parameters:

pos (torch.tensor) – sampling points (Nbatch, 3*Nelec)

Returns:

list where each element is one line of the xyz file

Return type:

list

gto2sto(plot=False)[source]

Fits the AO GTO to AO STO. The SZ sto that have only one basis function per ao